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Estimation with Incompletely Specified Loss

Functions (the Case of Several

LAWRENCE D. BROWN*

Location Parameters)

If p> 3 separate normal means are to be estimated, the usual, invariant
estimator is “inadmissible’” if the p separate loss functions can be
pooled into a single loss function for the ensemble-of-means prob-
lem. Here, we formulate a version of the problem where the losses
cannot be pooled in this way, and find a surprisingly weak necessary
and sufficient condition under which the usual estimator is inadmis-
sible in a sense appropriate to this formulation. We also examine the
spherically symmetric case and find a different necessary and suffi-
cient condition there. ~

1. INTRODUCTION

Suppose z; is an observation of a normal random
variable with unknown mean p; and known variance
012 > 0. The usual estimator of y; is given by 8o(z1) = 1,
i.e., by the observation itself. If the loss is measured by
a ‘“squared error form,” L(u1, 8) = ci(us — 8)2, ¢1 > 0,
then this estimator is admissible. That is, there is no
estimator & such that

Eul{(ﬂvl - 5)2} < Em{(#l — 50)2} = g2

with inequality for some value of u;.

The function Rz(u, 8) = E {L(uy 8)} is called the risk

function. If one looks at the statistical problem through
the risk function, admissibility appears as a minimal
requirement which an estimator must satisfy in order to
be used—an experimenter should not use an inadmissible
estimator.! -

Suppose p such independent problems are treated at
the same time and p > 3. The measure of loss which
seems natural is the sum of the losses of the three in-
dependent problems, that is

L(p, 8) = 2 ci(ps — 8)* . (L1

(Here p = (1-’117 oy up)y 8= (8, -0, 85)', ¢: > 0.) The
intuitively natural estimator is again the observation
itself, do(x) = x. (Here z = (1, -+, ¢,)’.) This is the
estimator which results from p independent applications
of the one-dimensional estimator to the respective co-
ordinate problems. The surprise is that this natural
estimator is now inadmissible.

* Lawrence D. Brown is professor, Statistics Center, Rutgers University, New
Brunswick, N.J. 08903. This research was supported in part by NSF Research
Grant MPS-72-05075-A02.

1 This general statement is correct provided a minimal complete class exists,
which is the case in all the problems discussed in this article. The statement also
tacitly assumes that if an estimator is inadmissible the experimenter is easily able
to describe and use one of the better estimators which exist.

This surprise was first discoverd by Charles Stein [17]
(in the case 01 = 022 =-- = ¢,%). Estimators which
provide a significant improvement over the usual esti-
mator were later presented in James and Stein [13],
Bhattacharya [4] Baranchik [27], Strawderman [19] and
in Efron-and Morris [107]. (See also Alam [17], Strawder-
man [20] and Bock [5], for related results.)

The inadmissibility theorem just described is surprising
precisely because the various coordinate problems appear
to be independent. It is not intuitively clear how the
combining of several independent problems can make
unacceptable a procedure which was acceptable when
appliéd to each coordinate problem. In actual fact the p
problems as just described are not independent. 1t is true
that the random variables X, - -+, X, are independent,
but the p problems are linked by the fact that the vari-
ances g12, -, o,? are measured on a common scale, as
are the losses.

We illustrate this linkage by an example. Suppose the
p = 3 separate problems involve measurements on

1. The percent of sulfur dioxide in a certain air sample,

2. The impedance in ohms of a certain electrical circuit, and

3. The yield in tons of wheat on a selected plot of land (having
no connection with the air sample in (1)).

Suppose that squared error is the appropriate form of
loss function for each of the three problems considered
separately. (This supposition of squared error loss will
be discussed in Section 6. It will be seen that it is a con-
venient assumption, but the basic results to follow do not
depend on it in any important way.) The constants ¢y,
¢2 and c¢; which appear in these loss functions are not
initially measured in the same units. In the example they
are measured in units of (-)/percent?, (-)/ohms? and
(+)/tons?, respectively. Pooling of the loss into the single
loss function L(u, 8) = X ¢;(8; — u:)? as we have just
done implies a determination that errors of ¢;~* percent,
¢~} ohms, and c¢;% tons, respectively, result in losses
which are equivalent to the experimenter(s). The placing
of losses on a single scale of measurement then enables
the placing of the numbers o2 on that same scale.
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To form the pooled loss function, the three separate
problems must, therefore, be linked together through a
realistic determination of the relative values of ¢;, ¢; and
cs. Sometimes this can be done and sometimes it cannot.

Case 1. Particularly when the three experiments are
performed by three different, unrelated experimenters it
may be impossible to arrive at any determination what-
soever of appropriate relative values of the constants ¢,
¢z and cs. In this case a conservative approach is to adopt
a procedure which is satisfactory under each of the pos-
sible loss functions: L;(u, 8) = ci(us — 8:)% 0 < ¢; < o,
i=1,2 3.

In this case we will say that the class, £, of allowable
loss functions includes the three functions L;. And we
will say that the procedure &, is £-admissible if there is
no procedure & such that Rp(u, 8) < Rr(u, 80) for all
L € &, with strict inequality for some u and some L € £.
In this language the “conservative approach” referred to
previously amounts to requiring that the procedure to
be used is £-admissible.

Case 2. On the other hand, perhaps some determination
of the relative values of ¢, ¢; and ¢z can be made. It is
conceivable that a process of discussion among the
experimenters and compromise for the general good
might, for example, yield a mutually acceptable range of
values for the ratios ¢;/c;, 7 ¥ j. For example, it might be
possible for all to agree that c¢;/¢c; < Kij <, 1, j = 1,
2, 3. (Note that this indeed compromises among the
conflicting goals of the three experimenters since the sth
experimenter (who naturally feels that his experiment is
much more important than the others!) desires that ¢;/c;
should be large for j > ). In this situation the statistician
need only adopt a procedure which is satisfactory over
those loss functions agreed on by all concerned; those of
the form

Lu, 8) = 3 s — 8% ¢ifc; < Kiy <o,

i;j=1;"‘;l’~ (12)

In this case £ consists of those loss functions described
in (1.2). The formal definition of £-admissibility is as
before, and the statistician will want to use an £-admis-
sible procedure for this class of loss functions. After this
formulation, we begin to approach the problems de-
scribed in the preceding.

We begin by giving still another proof for Stein’s
classical inadmissibility result (see Theorem 1 in Section
3). In the course of this proof we develop a basic for-
mula which we will later use for our results about
L-inadmissibility.

With this preparation we can prove the results con-
cerning £-admissibility in situations like those we have
described. This is done in Theorem 2 in Section 4. It
turns out that in Case 1 the usual estimator cannot be
improved. This is not surprising. However, it did surprise
us that in any less extreme case—as in Case 2—the usual
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estimator can be uniformly improved. This is true no
matter how large are the chosen bounds, K;.

In Section 4 we only investigate the theoretical ques-
tion of L£-admissibility of §,. In the case where & is not
£-admissible we do not give a realistic formula for an
estimator which significantly improves on 8, over the
class £. Nor do we investigate the question of how much
improvement is possible. These questions—while of
interest—are beyond the scope of this article.

Section 5 treats a slightly different problem, which
involves the same family of unknown distributions, but
the class £ is somewhat larger than (1.2). It contains all
rotations of the functions described in (1.2). In this
situation 8o may be £-admissible, depending on the size
of the constants, K,;.

Section 6 describes several possible generalizations of
the main result proved in Section 4. These generalizations
should suffice to convince the reader that neither the
assumptions made concerning normality nor those con-

cerning a squared error form for the loss function are at

all required for the validity of the £-inadmissibility as-
sertions of Section 4.

2. WEAK ADMISSIBILITY

Here we formulate in a very general setting the cri-
terion described in Section 1, and then specialize this
criterion to the situation described there.

As usual, suppose {Ps: 6 € O} is a family of prob-
ability measures on some sample space X, ®. It is de-
sired to make some decision concerning § € ©; and the
measurable space of possible decisions is A, @. The set
of measurable randomized decision procedures (transition

functions from X to A) is denoted by ®.

The usual formulation involves specification of a loss
function L: ® X A — [0, «] with L(6, -) measurable
for 8 € 0. In place of this we assume that £ is a specified
collection of such loss functions. For each L € £, let
Ri: ® X D— [0, ] denote the risk function corre-
sponding to L, i.e.,

R0, ) = / [L(o, a)8(da| ) Pa(dz) .

We say that a procedure § is weakly admissible relative
to £if R1(6, &) < R.(8, 8) for all 6 € O, L € &£ implies
R.(6,8") = R.(6, 6), 6 € O, L & £. Correspondingly, we
say that & is (weakly) better than 6 relative to £ if
R.(8,8) < Rp(6, 0),0 € O, L € £ with strict inequality
for some pair L, 0. For short we will write ‘£-admissible,”
ete., in place of “weakly admissible relative to £.”

Under suitable (and usually obtaining) conditions,
for every inadmissible 6 € D there is an admissible
8’ € D which is better than 6. That is, the “weakly
admissible”” procedures form a ‘“weakly complete” class.
This result may be deduced from LeCam [15].

If it is decided a priori that the loss function is in the
class £, then as in the usual statistical formulation, weak
admissibility relative to £ is a minimal requirement for
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a usable procedure. The experimenter(s) should not use
a weakly inadmissible procedure.

(A complementary notion would be “strong (or,
uniform) admissibility.” é is “strongly admissible’ rela-
tive to £ if it is admissible for each L & £. This notion
is less interesting since if £ is very rich there may often
be no nontrivial strongly admissible procedures. There
are some possible types of admissibility which lie between
weak and strong admissibility. We do not pursue any of
these here.)

In the situations described in Section 1 and treated in
Sections 3 and 4, the distributions Py are multivariate
normal with expectation 8 = u = (u1, - -, up) (O = R?)
and with independent coordinates having positive vari-
ances 1% -- -, 0,2 In the first of the two situations dis-
cussed in Section 1, £ is the class of loss functions

L ={L:L(u; 8) = ¢:(6i —p)%, 1 <1< p,c; >0} . (21)

We call this the situation of “total incompatibility’’ since
it corresponds to the case where no meaningful compro-
mise among the experimenters is possible. It should be
easy to see that weak admissibility for £ as above is
equivalent to weak admissibility for the convex collection
spanned by (2.1), namely, .

P

£ ={L: Ly, 8 = X ci(d: — ni*:

i=1

0<c <, 1<i<p}. (22

In the case of “partial incompatibility,” £ is the class
of loss functions satisfying (1.2).

3. STEIN'S INADMISSIBILITY RESULT

Before formulating and proving the results described
in Section 1, let us examine certain properties of esti-
mators for the classical normal distribution problem
involving a single specified loss function

D
L(p, 8) = X ci(8: — pa)? .
=1
In particular we study estimators similar to those pro-
posed in [17] and [13].

We are interested here only in establishing admissi-
bility or inadmissibility of the usual estimator in ap-
propriate generalized senses. When the usual estimator
is inadmissible, we are not interested here in describing
acceptable (i.e., admissible) alternatives to it or even in
finding estimators yielding a significantly large improve-
ment. Some references which pursue such matters in the
classical situation are mentioned in the introduction and
results remain to be obtained in other situations.

It will suffice for our purposes to examine the behavior
of estimators only when ||z| is large. And it is enough to
know the behavior of their risk functions merely for ||u|
large. First, we prove a result which shows why this is so
in the classical situation, and then we proceed to the
examination of Stein’s [17] estimators. This result is
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based on the technique of randomizing the origin which
is described in the proof following. (A like technique is
used in classical proofs of the Hunt-Stein Theorem, but
for a different purpose. (See [217.))

Proposition 1: Let p > 2. Let L be given, as in (1.1).
Suppose there exists an estimator §; whose risk

B(y, 51) = Eu{i il — 01)*}

satisfies
lim inf [(R(k, 60) — B(y, 80)- ([T >0 . (3.1)
Hull >0
and for some B < »
R(u,81)) < B <o, (3.2)

Then the usual estimator, §o(x) = z, is inadmissible.
Proof: For convenience we let

R(u, 80) = Ro (a constant), and A(w) = Ro — R(u, 81)

We have
lim inf ||u||2A() = a > 0 .

B >0
Hence, there is a constant, r < «, such that
A(p) 2 a/2(ul|* for

ull > . (3.3)

' Let git) = Ry — B for 0 <t <r and a/2t2 for t > r.

Then A(w) > g(||ul])-
Since the hypotheses of the proposition do not guaran-

. tee A(u) > 0 everywhere, it need not be the case that 6,

is itself a better estimator than .. However, §; may be
used to produce a better estimator d;—by “randomizing
the origin.” Let 8:°(x) = 6 + 61(x — ). 6:° is the esti-
mator §; with the origin placed at the point 6. Hence,

R(P') 610) = R(l"' - é) 61) ’

as can be checked directly from the definition of R.
Let 0 be normally distributed with mean zero and
variance-covariance matrix K2I, 0 < K < . Let

8a(x) = E(5:°())

where the expectation is taken (over 8) with respect to
the above normal distribution. For convenience we sup-
press the dependence of 8; on the constant K. Apply
Jensen’s inequality:

R(p, 82) = Eu{Z ci(ui — 820)%}

=1

= E“{i c;(y; —_ E(‘;”ﬂ(x)))z}

=1

< BE(Y: oi(us — 0 (@)}

= EE{Y ci(ui — 61:°(x))?|8}
= E(R(l-‘ -0, 81)) .

Thus, Ro — R(u, 82) 2 E(A( — 6)) = E(g([lu — 6I).
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Now,

(2m)»2K2E(q([|0 — o[)))

= [atlol) exp (~Hlollz/K)do <o a5 K —

by the dominated convergence theorem. Hence, for
K sufficiently large, say K > Ko, we have that
E(g(l0 — 6[)) > 0.

Consider the distribution of the variable T = |[up — 6],
given the parameter w. T?/K? is a noncentral x? variable
with noncentrality parameter ||u|/2/2. It is well known
(and easily checked) that the distribution of 7 has a
monotone likelihood ratio in the real parameter ||u|. The
function ¢(f) crosses zero but once, and ¢(¢f) > 0 for ¢

sufficiently large. Hence, E(q(|ju — 6|))) = Euun(q(T))

can cross zero at most once as a function of ||u|; and this
crossing, if it occurs, will be from negative values to
positive ones. (See [14].) Since Eiu=o(¢(T)) > 0 for
K > K,, it must be that for any K > K, no crossing of
zero occurs. We thus have for any K > Ko Ro — R(u, 62)
> E(q(|u — 6])) > 0 for all u, which is the desired
result.

(We note here, and will later use without further proof,
that this Proposition can be extended to cover the
situations involving a class of loss functions and also
the nonsquared error situations which arise later in this
article. Conditions (3.1) and (3.2) are easily reinterpreted
in such cases; they then remain as sufficient conditions
for inadmissibility or £-inadmissibility of the usual
estimator. Note in particular that if a class of loss func-
tions is involved, as in the later applications to £-in-
admissibility, then (3.1) and (3.2) must hold uniformly
in all the normalized loss functions of this class in order
for &, to be better than &, for all of these loss functions.
More precisely, we will need that for ||u| > ki

B, 80) — RGuy s)ull* > ke B e > 0, (3.1)

=1

for all ¢ € @ as defined in Section 4, and

P .
R(u,81) < B ¥ ci < (3.2)

=1
for all c € €.

To demonstrate inadmissibility of the usual estimator
in the classical situation (fixed L), we thus need only to
develop expressions for the asymptotic behavior (as
[lull =) of the risk of alternative estimators to 8,. We
shall now do this. These expressions are the foundation
for all of the subsequent results of this article.

Let 6(x) = 2 — h(z) where h = (b1, ---, hyp). Let
Ai(w) = 02 — E(8:(x) — w:)?, so that

Ro -_ R(u, 3) = ﬁ CiAi(u) .

Let z; = 2 — w; and 2 = (21, -+, 2p). 2; i8 normal with
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mean zero and variance o2 Then

Ai(p) = ot — Eu((8:(x) — p)?)
=02 — E(z: — hi(p + 2))?
= 42E(@hi(u + 2)) — E(hd(u +2)) .

The Fundamental Ezxpressions: Suppose h; is con-
tinuously differentiable. Then

B+ 2) = hw) + 5 2shi() + e, 2)
j=1

where h;; = (9/94)h; and e; is the appropriate error term.
Since E(z;) = 0, and E(2:2;) = 0 for 2 = j, and =0
for ¢ ¢ j we have

Ai(ﬂ) = +2hii(ll)0'i2 - E(hzz(ll + 2)) + eil(ﬂ) )

where e/ (u) represents the appropriate error term. If we
further approximate E(h:*(u + 2)) by h?(u) and rewrite
the error term as e;”'(u), we have

Ai(w) = 202hii(u) — hi*(w) + &' () . (3.4)

For L as given by (1.1) this yields the fundamental
expression -

A(w) = D) + € (v) (3.5)

where
Di(p) = D(u) = 2 cioithii(u) — 3 ch(w) . (3.6)

According to Proposition 1, to show that o is inadmissible
it suffices to find a smooth vector valued function A for
which

lim inf [|u|[2D(u) > 0 3.7

Il >e

and for which the error term ¢’ is small enough to be
insignificant.

The Error Term: In the preceding we have refrained
from a detailed computation of the error terms e, ¢/, and
¢’’. The necessary computations are similar to those
which appear in [6, Sec. 3]. To view these terms
qualitatively, note first that the standard estimates for
e; involve the second derivatives of h; near u (assuming
h is sufficiently smooth). From these it is to be expected

that
e (n) = O( Zk | (8/8k)hii(w)|)
LD

The solutions of (3.7) which we shall encounter are
mainly of the form h; = #;/|u|| where v; is a smooth
bounded function. For convenience write h: <> (1/]ul))
for such a function. In addition the v, will satisfy that
their nth derivatives are O(||ul~"), n» = 1, 2. Then
hise 1/|ull®) and (3/0k)hi; < (1/||u]l?). Hence, [ul*
-/ (u) — 0 as ||u|| —  so that e;(u) is of a smaller order
than the terms in (3.7). :

Also, e/'(u) = e/ (u) + E(h*(u + 2)) — hi(u). For h
as before, [E(h2(u + 2)) — h2(u)] < (1/||u]|%) so that
e;'’ is also insignificant relative to the terms in (3.7). For
h as above (3.7) itself does indeed imply the key condition
(3.1) of Proposition 1.
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These considerations lead to the following inadmissi-
bility theorem, which generalizes the result in [17] and
is included in Theorem 3.1.1 of [6] (See also [4].)

Theorem 1: Suppose the loss function is given by (1.1)
and p > 3. Then §,is inadmissible.

Proof: Let 6(x) = z — h(x) as before where the co-
ordinates &; of h are smooth bounded functions satisfying

hi(x) = exi/cio?|z]* =] > 1.

(In the case where cis:2 = k, 1 <7 < p, then, for
lz]] > 1, 8(z) = (1 — ¢/k||z||?)z.) Computing h.i(u) yields

flull > 1.

for

D) =

Now,

% wtflult =1

Thus if we choose ¢ = y min {cioi*: 1 < ¢ < p} with
0 <y < 2(p — 2), the preceding becomes

D) > (¢/[u|H@®P —2) — ) >0, |lul>1.

Condition (3.7) is therefore satisfied. Since A is bounded,
Condition (3.2) of Proposition 1 is also satisfied.

The error term ¢’ is of the type described so that
(3.7) implies Condition (3.1) of Proposition 1. A ran-
domization of the origin as described in that Proposition
therefore yields an estimator better than &,.

Remark: Since the constant K which is used in the
randomization described in Proposition 1 is not given by
an explicit formula, the preceding process does not ex-
plicitly describe an estimator 8, which is better than &o.
However, it is evident that the better estimator, &,
constructed by the recipe in Proposition 1 from the
estimator 8(x) = x — h(z) of the preceding proof will
satisfy

5:(z) = z — W (x), where h/(z) = hi(x) + o(1/|z|])

evi/cof[z]|* + o(1/[x]), as [z > .
Hence we know the asymptotic form of 8, as ||z|| — .

When cio;? = k this form agrees with those given in [17]
and [13].

4. THE MAIN RESULT

We now turn to the general problem described in
Section 1. To be precise, let € be a subset of the non-
negative quadrant of R? and let

P
£(€) = {L: L(u, &) = X ci(di — pa)? ;
=1 )
Y C'p) & @} .
Let €* denote the closed convex cone generated by €,
except for the origin. We emphasize that 0 & @*.
As before, the observations are independent normal
with unknown means and with known variances ;2. (See
Section 6 for generalizations.)

c= (e, -
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The following simple proposition will be very useful in
our discussion. Its conclusion is true in situations much
more general than the one we treat here.

Proposition 2: 8o is weakly admissible relative to £(@)
if and only if it is weakly admissible relative to £(€*).

Proof: Suppose Rr(u, 8) < Rr(u, 8o) for every L E£(@),
w € R», Let @ denote the convex cone generated by €.
Let L' € £(€'). Then L' = 3%, a;L; for some a; > 0,
L; € £(e). Hence, Ry (u, 8) < Rp(u, 60) <.

Suppose L'’ corresponds to a point in the closure of €’.
We write L' = lim L/, where L/ & £(€’). It is then
straightforward to conclude that

Ry (p, 8) = lim Br,(u, 8) < Er(y, 60) .
Inadmissibility of &, relative to £(@€) thus implies in-
admissibility relative to £(€*).

Conversely, suppose &8, is inadmissible relative to
£(e*). Then there is a procedure § such that Ep(u, §)
<Ry(u, 6) for all L & £(€*) and strict inequality holds
for some 1 and some L € £(€*), call them po, Lo. Clearly
RL([A, 5) S RL(/.L, 50) S RL([.L(), 50) < o for all L & £(€)
Furthermore, Lo =.lim L; where L; & £(€’) C £(C*%).
We can conclude that
lim Ry;(uo, 8) = Riro(uo, 8) < Rro(uo, 80) = lim Rz, (uo, o) .

1->00 1>

Thus 8, is also inadmissible relative to €. The proof is
complete.

We then have the following main result.

Theorem 2: Let £ = £(e) as above. Then §, is admis-
sible relative to £ iff for every subset of coordinate
indices 1 < 4; <---< i, < p either there are two in-
dices—iy, %, say—and a point ¢ € €* with ¢; = 0 for
Jj#k 41 < j< ) and max (cy, ¢iy) >0, or ¢;; =0,
j=1,---, m for every ¢ & C*

Interpretory Remarks: James and Stein [13] showed
that in dimension p = 2, &, is admissible relative to any
given L € £, and therefore admissible relative to £
itself. The theorem says this is essentially the only
situation in which 8o is admissible relative to £—for &
to be admissible relative to £ it must be that in every
nontrivial = dimensional subproblem, £(€*) contains a
loss function with at most two nonzero coefficients within
that subproblem.

In the interpretation of Section 1, Theorem 2 shows
that for p > 3 &, is admissible in the case of total in-
compatibility (2.1) of the loss functions,? but not much
more generally. In particular, in the case of partial
incompatibility as specified in (1.2), 8o is not admissible
relative to £.

Proof: In preparation for the proof of sufficiency of the
condition of the theorem, we review some known ad-
missibility results. Suppose for some procedure & and for
some 1 <k < £ < p and some ¢, > 0, cc > 0,

B (crlur — 81)? + colpe — 80)?) < cuoi? + ceo? (4.1)

2 A referee has pointed out that this result is in [12, p. 704].
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for all u & R». Then, it is known that éx(zy, - -+, 2p) = 2%
a.e. (w.r.t. Lebesgue measure on R?). The reasoning for
this result is as follows.

For notational convenience suppose k = 1, £ = 2. Fix
way -, wp Let 8%(z1, 22) = (81%(x1, 2), 82* (21, 22)) be
defined by 8*(x1, x2) = E,(8:(x) |z, x2), ¢ = 1, 2. Since
the coordinates { X;} are independent, 6* depends only on
%1, T2, ps, -, Mp, as indicated by the notatton. Then

By (ei(ps — 81%)2 4 ca(pe — 8:%)%) < cio4? + coo?

for all uy, ue € R2 . (4.2)

In short, 6* is at least as good as &, for the two-dimen-
sional problem defined by X1, X, By [13, Theorem 27,
30 is admissible in this two-dimensional problem; thus
the two sides of (4.2) must actually be equal. (See
[13, p. 375] for a summary of this argument.) By
Jensen’s inequality the estimator }(8* + &) will be
strictly better than 6* and 8, unless 81* = (d0)1 = 21 a.e.
(See [11, (5.16)—(5.18)] for a similar use of Jensen’s
inequality.) This would contradict the admissibility
result previously quoted. Hence, &:* = z; a.e. This
result must be true no matter what fixed value of ps, - - -,
up was used in the definition of §*. Hence,

.....

for all w3, ---, up and almost all a, b & R2 By the
completeness of the family of normal distributions this
implies 8:1(x) = z1 a.e. on R?, as claimed in the first
paragraph of the proof.

We can now prove sufficiency of the condition of the
theorem. Suppose & is as good as 8o with respect to £. By
the condition there is a ¢ € €* and two indices 4; and 7,
such that-c; = 0 j 5 1, %2 and ¢;;, > 0. (The possibility
ci=0¢=1, ---, p for all ¢ € e* is ruled out by the
definition of @*.) For notational convenience suppose
71 = 1. Then, by the preceding remarks, §:(z) = z: a.e.

Now consider the collection of remaining coordinates
2,3 --,pIlfc;=0fori=2,3, ---, pforall c & C*
then forall L € &, R1.(u, 8) = E.(ci(81(x) — p)?) = ci04?
= Ry(u, 80). Hence, 8, is admissible with respect to £,
and the proof is completed here. If ¢; # 0,2 =2, ---, p
for all ¢ € €* then by the condition of the theorem there
exist two co-ordinates 2 < 7, 7x < p and ¢ € €* such
that ¢i;, > 0 and ¢; = 0 for j 5 4, 4. For notational
convenience assume here that ¢, = 2. Then, as before,
82(x) = xs. In this case, proceed by induction as follows.

Consider the collection of remaining coordinates 3, - - -,
p. Proceed as in the preceding paragraph. Continue the
process by induction. Either the process will terminate
because all the p coordinates have been exhausted, or
because at some stage the set of remaining coordinates.
&, *+ v, Un satisfy ¢, =0, j =1, ---, = for all c € €*
In the former case we will have 8;(x) = z: a.e., so that
Rr(u, 8) = Rr(u, &) for all L € £. In the latter case
Ri(u, 8) = Rp(u, 80) by the reasoning of the preceding
paragraph. This proves the sufficiency of the condition
of the theorem.
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To show necessity of the condition in the theorem we
will, under the failure of this condition, formulate an
estimator which dominates the usual estimator for all
L € g(e¥).

First, some preliminary remarks concerning the con-
dition in the theorem. When the condition fails, there are
x > 3 indices 7; <--- < 1, such that for every ¢ & €*
three of the coordinates, say ci,, c:,, and c;,, are nonzero.
For notational simplicity, and without loss of generality,
we may restrict attention to these coordinates and hence
assume that p = =. For any ¢ & €%, let ¢ denote the
kth largest among the numbers (ci, ¢s, - -+, ¢p). By as-
sumption if ¢ € €* then ¢ > ¢® > ¢® > 0. Let

B’ = sup {¢WV/c®:c € C*¥} .

Since €* is a closed cone and ¢® > 0 for ¢ & C* it
follows that B’ < oo,

The remainder of the proof consists in first finding
functions {h;} which satisfy (3.7) uniformly in ||u| and
¢ € e*. (The exact definition of what is meant here by
“uniformly” is described by (3.1’) which follows the
proof of Proposition 1. It is also necessary that (3.2)
be satisfied.) It is then necessary in the proof to check
that the error terms indicated in (3.5) are uniformly
negligible in the appropriate sense for these functions
{h:}. The functions {h;} which we will find depend on €
only through the constant B’; and the condition B’ < «
is what allows for the uniformity in (3.7) and in (3.5)
referred to before.

The remainder of the proof is deferred to the appendix,
where we carry out the steps referred to in the preceding.
The functions {h;} which are defined there were found by
a process of trial and error. We have not been able to
develop any intuitive explanation of their nature or
properties.

5. SPHERICALLY SYMMETRIC ESTIMATORS

We began this investigation in the hope that the usual
estimator would be found to be £-admissible in many
nonextreme situations. Theorem 2 shows that this is not
the case—at least not for the formulation examined in
Section 4. We are then led to ask whether some other
description of the class £ leads to £-admissibility of do
in nonextreme situations. This is indeed so; however, the
new class £ involved here does not have the same justifi-
cation as a compromise among competing experimenters
as does the class of loss functions discussed in Section 1
and examined in Section 4. The result is described in
Corollary 1 to Theorem 3.

Let the observations be multivariate normal, as pre-
viously, and also let the loss function be ¥ ci(8: — pi)?
¢ € e, as before. Note that if & is spherically sym-
metric, i.e.,

8(x) = 1 — g(lzlN= ,
and h(z) = g(||z|)z has the particularly simple form
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h(z) = ex/||z||%, then

612D = 26 T (G021 — 20/ ul?)
= — ecip?/2||pl?) .

We have the following result.

(5.1)

Theorem 3: There exists a spherically symmetric esti-
mator § # 8o such that Rr(u, 8) < Rp(u, ) for all » and
all L € £(e)if for all c € €* 1 < k < p, the inequality

P
2 cioi? > 2ckok?
J=1

(5.2)

is satisfied. Conversely, if 12 =--- = ¢,%, then (5.2) is
also a necessary condition for the existence of the § = &,
described above.

[Condition (5.2) is most easily interpreted in the case
where ¢;2 = -+ = 0,2 It then becomes that the largest
among the coefficients ¢y, - - -, ¢, must be strictly smaller
than the sum of the remaining coefficients, for all ¢ € €*.]
M.E. Bock [5] has independently obtained this same
result by an entirely different method of proof.

Proof: Let

ixéf [2 cio? — 2max {cio:1 <7< p}l/S ¢ .
ccC

o =

Using (5.2) and the fact that ¢* is a closed cone yields
that o > 0. Substituting the condition (5.2) into (5.1)
yields

»
[ll2D () > 2¢(X cio? — 2 max {cioi?: 1 < 7 < p}

=1

= (¢/2) X ciui®/|ul?)

=1

> 2e(a — €/2) Zp: ci .
=1
Hence, choosing e < 2a, randomizing the origin, and
verifying the insignificance of the error term yields the
existence of the desired estimator &.

The converse result is proved by an. application of the
multivariate Cramér-Rao inquality. The following argu-
ment is patterned after that in [17, p. 202-3].

Applying the multivariate Cramér-Rao inequality
yields the following necessary condition for an estimator
to be better than the usual estimator:

23 cioi?bii(u) — X cioi?bi?(u) — X cb2(u) >0, (5.3)
i

where b is the negative of the bias:

b(w) = u — Eu(6()) , (5.4)

and
bij(k) = (8/0u)bi(u) .

Dropping the b;;? terms reduces (5.3) to the necessary
condition:

22 cio®bii(u) — 2 cibi®(w) 20 . (5.5)
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Hence, §o will be shown to be admissible if it can be
shown that there is no nontrivial function b(u) which
satisfies (5.5).

[Note the similarity of (5.5) to the basic equation
A(u) > 0, as in (3.5). The two equations are formally
identical, except that b = E,(h). This similarity is much
more than a coincidence. See the remarks in Section 7.]

In this theorem, b is spherically symmetric. Let
t=ul* and b() = W(lul®/[ulPu = @E)/t)u. For

notational simplicity, suppose ¢ € C* satisfies
et —cmd)/Yci=a<0.
Suppose ¢(to) > 0 for some £, > 0. Let
p=(lul,0,--+,0) = (+40,---,0) .

In terms of ¢ and ¢, at this ¢ € €*, and at such values
of u, (5.5) becomes

20(X )y ()/t + dero' () — ep®®)/t >0 . (5.6)
Then (5.6) implies
4/ () — Y2(t) /e >0 for ¢t >4 . 5.7

The argument in [17, p. 203] shows that (5.6) implies
Y(t) < 0fort > t,. Hence y(f) = 0 for t > t,.
Suppose, on the other hand, ¢(t)) < 0 for some ¢, > 0.

Evaluate (5.5) at u = ([[ull/vp, lull/~vp, -+, llull/vD).
It becomes

(2 = 4/p)(Z cioY®)/t + (4/p) (X cio )Y (B)

— (X a/pr)/t 20 . (5.8)
In (5.8), ¢(¢) <0 for t = ¢y, and (2 — 4/p) > 0 imply
that ¢/'(f) > 0 for ¢ < ¢, and, hence, y(f) < 0 for ¢ < ¢,.
Thus :

Y(t) — @O/ (/4 cio?) 20 for ¢t <t (5.9)

Again, the argument in [17, p. 203] shows that this
implies ¢(t) > 0 for t < t,. Hence, ¢(f) = 0 also for
t < to.

In summary, we have that (5.5) and b differentiable
and spherically symmetric imply that b = 0. This implies
that 8(z) = do(x) a.e., which is the desired result.

The setting of the corollary is as follows: The obser-
vations are normal as before but with o2 =-:-= o,2
and now the class £ consists of all quadratic forms in

(u — &) with specified eigenvalues. Thus
L =28*%e)={(u—8Mu—23:M = QCQ where

C1 0
Q is orthogonal and C = .. with
0 ¢p

(017 MY cﬂ)ee} .

For convenience in stating the following corollary, let
o?=0g2=---=g¢,% and for ¢ € C* let ¢V, --., ¢®
denote the coordinates of ¢ arranged in descending order.

Corollary 1: 8o is £* = £*(€) admissible iff for some
cE e*

P
e > 3 ¢,

=2

(5.10)
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[This can be expressed by saying that 8, is £-admissible
iff some loss function in £* weights its principle coordi-
nate direction at least as heavily as all the other directions
combined. ]

Proof: If &, is £* inadmissible there must (by in-
variance, and compactness of the rotation group) be a
spherically symmetric estimator § which is better for
all L € £&. (The invariance argument includes the fact
that £* is invariant under the rotation group.) Theorem
3 tells whether such an estimator & exists, and (5.10) is
merely a re-expression of (5.2) appropriate to the current
situation. The converse also follows immediately from
Theorem 3.

An alternate interpretation: There is an alternate inter-
pretation of Theorem 3 and its corollary which may also
be of interest, and which is inspired by some of the
considerations in [97]. »

As in Corollary 1, suppose ¢ = 012 = -+ = ¢,2 Sup-
pose the estimate 6 of the mean vector u is to be used as
follows:

Some linear functional By is to be estimated where B
is a (k X p) matrix and, of course, u is (p X 1). This

functional is to be estimated by Bé (6 is (p X 1)); and.
the loss is measured by squared error in k-dimensions. "

That is,
L® (u, 8) = ||Bu — Bo||* .

Suppose the matrix B is not given precisely at the time
the estimate & is to be made; or, what amounts mathe-
matically to the same thing, that the same estimate, §,
is to be used in the preceding manner for estimating Bu
for a variety of different matrices B. We will suppose B
is given a priort to be a specified class, denoted by ®.

The appropriate generalized admissibility concept is
thus that &, is B-admissible if the inequality

E(L® (y; 8)) = BB (4, 8) < RP (u, d)
for all » and all B € ® implies that
R® (u, 8) = BB (u, b0o)

for all » and all B € ®.
In the following corollary we are interested in such a
situation when ® has the form:

{B: Bis (k X p) with the eigenvalues of B’B being

Cs

® =
k

1
-

ety Cr ECR) .

Here @y is a specified subset of R¥, and €;* will be defined
as before. Note that some (but not all) of the sets Cxin
the preceding formulation may be empty. (Note also that
if £ > p then for every ¢ & @, some of the coordinates
¢1, -+, ¢x must be zero. This is not true of @;*. These
peculiarities do not interfere with the result which
follows.)

[In [9] this situation was considered with k¥ = 1 only
(i.e., @, = ¢ for k > 2), but average admissibility of the
estimators with respect to Haar measure on {Q} was
considered, rather than ® admissibility.]
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Corollary 2: The usual estimator, 8o(z) = z, is B-admis-
sible in the preceding interpretation iff @, = ¢ or @, = ¢,
or for some k >3 and some ¢ = (c1, -+, cx) E Cx*

k
¢ > 3 ¢,

=2

(5.11)
Proof: Note that
R® (u, 8) = Eu[(6 — w)'B'B( — )] .

Hence, §p is ®-admissible iff it is £-admissible for
£ ={( —u)B'B(6 —u): BE ®}. Note also that if
B € ®, then BQ € & for @ p X p orthonormal. Hence,
£ is of the form £*(e€) treated in Corollary 1, where €
depends on the sets @i, @y, ---. It is then a matter of
algebra to check that Condition (5.10) is satisfied iff
@y ¥ ¢ or @y # ¢, or Condition (5.11) is satisfied.

6. GENERALIZATIONS

Theorems 2 and 3 can be generalized in many direc-
tions. The possibility for such generalizations can be
easily seen if one notes that the fundamental expressions
(3.5)—(3.7) are really the beginning of a Taylor series
expansion for Ry — Ryp(u, 8); and that given these ex-
pressions the proof of these theorems involves only the
first few moments of the distributions involved. The
following comments deal specifically with Theorem 2, and
amplify the preceding observations. Similar considera-
tions would apply to the sufficiency part of Theorem 3
and its corollary. (The reader may wish to consult [8]
for some othér facets of the method indicated by these
remarks.)

Theorem 2 dealt with the situation where the obser-
vations 2, - -+, 2, are independent normally distributed
variables with location parameters (means) pi, * -, wp;
and where the loss function is of the form Y ¢:Li(u: — 8:)
with each L;(f) = 2 These assumptions of normality and
of quadratic loss are in no way essential for the validity
of Theorem 2. The following remarks should make this
clear without the necessity for further formal arguments.

Remark 1: The assumption of normality is not neces-
sary in Theorem 2. The proof of“this theorem involves
only certain moments of the variables X;. It will suffice
if the observations 3, - - -, =, are independent observa-
tions, and have probability distributions Fi(z: — us),
respectively, with E.X; =0 and where the second
moment of F; is known (i.e., Var (X;) = ¢:2) and the
fifth moment of F; is bounded (so that the error terms,
¢’ (u), are sufficiently small).

Remark 2: The assumption in Remark 1 of a single set
of observations w1, - -+, x,—rather than repeated inde-
pendent observations {xi}, j =1, -+, J(@),i=1,--,p
with each z;; coming from the distribution F,—is un-
necessary. The situation of repeated observations can be
handled in the usual manner by conditioning on the
value of a maximal invariant, as was done, e.g., in Brown
([6]; see especially Ch. 3).

Remark 3: The assumption in Theorem 2 that the loss
functions L; = Li(u;i — 6;) be quadratic is also not
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necessary. An extension of Theorem 2 is valid also for
nonquadratic loss functions.

Relaxation of this assumption does require slightly
more care than the relaxation of the normality as-
sumption. In essence the relaxation depends on two
observations.

(i) Suppose X; has the distribution Fi(z; — u:) as in
Remark 1 and §,:(x;) = x;is the best invariant estimator
of p; for the given location invariant loss function
L; = Li(u: — §:). (This assumption involves no real loss
of generality.) If L. possesses a continuous first deriva-
tive, then

EoL/(—z:)) =0, (6.1)

provided that

/ sup L/(—t — ¢ F:(dt) <o, forsomee > 0.

lTel<eg

If the second and third derivatives of L; also exist, then
letting 8:(z) = x; — hi(z) and expanding L; and h; in a
Taylor series yields

Ai(u) = E(Li(ui — x3)) — E(Li(us — 8:()))
= 2hii(w) Eo(—x:Li' (—x:)) — h2(w)Eo (L' (—x3)) + ei(p) .

If L) <Ofort < aand L/ > 0fort > a, it follows
from (6.1) that E(—x:L/(—=2:)) > 0. Under reasonable
assumptions concerning the existence of moments and
the growth of L and L/, an & of the form used in Theorem
2 can then be chosen to yield e;(u) = o(1/|x||?) and

lim inf [|u[? 3 ¢iAi(u) > 0

||[l”->ao

uniformly over €* in the sense of (3.1') of Section 2
where ©* is as in the hypothesis of Theorem 2.

(ii) If L; is convex an analog of Theorem 2 follows
immediately from the preceding remarks by using an
appropriate modification of Proposition 1. If L; is not
convex the use of Jensen’s inequality in the proof of
Proposition 1 is of course not valid, but a useful version
of Proposition 1 can still be proved in which the new
estimator constructed is a randomized estimator.

Remark 4: In the preceding considerations we have
assumed that the distributions of Xy, -- -, X, are known,

except for the unknown location parameter, It is fairly

clear that a more general result is possible, although a
precise formulation is beyond the intended scope of this
article. For example, suppose X, ---, X, are N(u, 0%
as in Theorem 2, except that the variances, ¢.2, are un-
known; but that, as usual, one has available estimates
8;? of ¢ where s is independently distributed as
(60:Xm;2)/ms (£ =1, ---, p). One may then substitute
these estimates for the true values in the definition of &
in Theorem 2. For m;, -, m, sufficiently large, this
estimator will be better than &, for all L & £(€*) when
the hypothesis of Theorem 2 is satisfied. (This result can
be rigorously established since the expressions for By (x, 6)
in Theorem 2 can be shown to be the limit as inf {m;:
1 <7< p}—w of the risk function in the current
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situation. However, it is not clear how large the m; need
to be for this result to be valid.) Computations (for the
case of a single specified loss function) which are mathe-
matically similar appear in [22].

7. REMARKS

By differentiating inside an integral sign as in [7,
Formula (1.2.2)], Stein [18] has recently shown in the
multivariate normal situation of Section 2 that

A(u) = Eu(Di(w)) (7.1)

where D is defined in (3.6). (See also [16].) Hence, to
prove inadmissibility in Theorem 1, it suffices to find &
so that D,(u) > 0 for all u. A similar comment holds for
Theorem 2. '
Furthermore, since D, is concave in h, a version of
Proposition 1 is valid for the operator D:
Let p > 2. If for some bounded A

lim inf [|u[|*Ds(u) > 0

Hull >0

then there is bounded h* such that D(u) > 0 for all u.
(In fact A* can be taken to be E®(h(x — 6)) where 6 is as
in the proof of Proposition 1.)

It should be clear that we could have rewritten Sections
3-5 so that the proofs would depend on (7.2) rather than
on (3.5). This would have eliminated the necessity of
discussing the error terms in Section 3 and in the proof
of Theorem 2. On the other hand, the argument based on
(7.2) seems to be very dependent on the exponential
character of the normal family of distributions. The
generalizations indicated in Section 6 do not seem to be
derivable by means of this argument.

(7.2)

APPENDIX: PROOF OF THEOREM 2, COMPLETED:

Let B = 2B’ max {¢2/0?: 4, j =1,--+,p}, B > 2. For given
0 <b < =, define

=@ = (T |z,
i=1

& = &) = |a;| /(@) = |ay |1/ |zl
o o [AB—D+1/12B 0<i<1fs
V=\aB-9/B+1/12B 1/3<t<1"’

3
w(§) =/; L)t (1 — f)b-1dp .

Note that £(t) <0 for ¢t > 5/12, £(t) > 0 for ¢t < 1/3, and £(-) is
convex. Note also that £(0) + €(1) > 0. If follows that it is possible
to choose b so that w(0) = 0 = w(1). (Note b = b(B) > = as
B— ».)
Let :
hi(x) = ew(£:) sgnai/n(x) (1 — £)° .

Since w(&) = 0(g2(1 — £)?), h; is bounded and continuous outside a
neighborhood of # = 0. The constant, ¢, will be determined later.
Then let
for [zl <1
5() = { :
z — h(z) for |z|| > 1 where b = (hy, -+, hp) .

Now,
(8/0z)hi(z) = his(x) = (e/br*(x))E(&) .
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The basic formula (3.6) in this case is thus

D(u) = e (w)b7'(2 2'5 ciotl(£:(w) — b T can*(&:)/(1 — &)%) .

=1 s=1

The crucial property of the functions £(-) is that since ¥ & = 1,
p 2 3, and ¢V max {o:?} < Be® min {¢:?},

Y cioi®€(£) > 3 cimin {¢2}/12B > 0 for all.c ee*. (A1

To verify (A.1), consider the problem of minimizing 32, aif(£:)
subject to the restrictions a; > 0, 3 o = 1 and a® < Ba® where
a® >a® >...> @, Fix ¢ For notational convenience suppose
£1 < £ <+ <& Since £ is decreasing, the minimum of 3 a:f(£:)
subject to these restrictions occurs when ai, as, a; are as large as
possible in that order—to be specific, when a; = B(2 + B), as = a3
=1/Q+B),as =---=a, =0. Now, fix s, --+, ap as specified
here, and let £ vary subject to the restriction & >---> &,. For a
given value of £ + £ = v the minimum of (1/(1 4 2B)) (£(£s)
+ £(&3)) occurs when £ = £ = v/2 < & since £ is convex. Consider
such ¢’s. Since Y- £ = 1 we have that £, = £ < 1/3. Substituting
in the definition of ¢ yields

1/3 — El. B 2(1/3 —v/2) &H +v
B 2+ B 2+ B 12B

2+B (£+)(2+B 12B)
>1/12Bsince0 < ¢+v <1 .
Letting a; = cioi?/ 3 cioi? yields (A.1).

Recall that w?(£)/(1 — £ = O(1). Hence ¢ may certainly be
chosen sufficiently small so that

2ol (k) 2

P
D(u) > Kn™%(u) X ¢i >0

=1

for all ¢ € e* for |[u] sufficiently large. Here, K is an appropriate
positive constant which depends on p, B, min {c¢,?}, and b, but not
on ¢ € €*. Since n?(u) = O(||u|?), it follows that

lim inf |4[2D(s) > K’ T ¢ > 0,

Hal—e

as required in (3.7) and (3.1). Since ||z — 5(x)|| is bounded, (3.2")
is satisfied.

Additional computations show that the error term e’ (u) satisfies
e’ (u) = co([[u]|2) as ||ul]| » «. It follows that randomization of
the origin yields an estimator which dominates the usual estimator
for all L € £(e*). We now summarize these computations.

Error terms: We now turn to the error term e1’ (u), as defined before
(3.4), in the situation of Theorem 2. By definition

e () = 2EL (11 () — h1(w) — hu(w) (@1 — p0)) (m1 — w0)]

To get a satisfactory estimate of this quantity using an elementary
Taylor series approach seems to require special care because hy;(f) is
not continuous when some #; = 0 for j > 1. A minor modification of
h might avoid this strictly technical difficulty and still allow for the
essential part of the proof of Theorem 2. However, we will take a
different approach, using the given %, and capitalizing on its sym-
metry properties and the independence of the coordinates of X.
Fix p. Let ¥ = X — u and consider the function

gw) = 2E{hi(u + wy)y:1} .

This function is differentiable on 0 < w < 1 and can be differentiated
inside the expectation and e’(u) = g(1) — o%h11(u). By Taylor's
theorem, ¢(1) = ¢g(0) + ¢’(%) where 0 < 1 < 1. g(0) = 0. Thus,
after some calculation,

e’ (u) = 2E|:(h11(/4 + Dy) — hyi(u))ys? z +hij (e + Dy)yy;] ;
=2 (A.2)
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h11 has been previosly computed. We have

7} (w) | B (s + dy) — haa(p) |y
< (ey?/D)L[€(E1 () — £(E1(n + dy)) |
+ (e + DY) |1 — 02 (w)/n? (e + DY) |[] . (A3)

Now,

[t = 2w+ )| exp (— 5 aivas2)

= {f R +f R }yﬁll — ?(u) /n* (s + dy) |
| lptdoy || >1 | lut+wy | [ <1
-exp (— X oi?y?/2)dy

— 0 as [[u]| = « uniformly on 0 < # < 1, since in the first integral
after the equality above y:?|1 — n?(u)/n?(u + y)| is bounded and
for each y tends to zero uniformly on 0 < % <1 as |jul| = «; and
since the second integral above is less than

7% (1) (SUP | |ut+dy || <1 Y1? exp (— T oi?y%/2))

W )y — 0
| sty || <1

uniformly on 0 < <1 as [jul]| = «.

Let I (i, u) = E (r.h.s. (A.3)). Apply the bounded convergence
theorem on the first term of I, and the preceding arguments on the
second. This yields I; (i, ») — 0 uniformly on 0 < % < 1 as |[u]| — «.
This part of the error term e;(x) is therefore insignificant, as desired.

If y=(y, -, yp) let y* = (—y1, vs -, Yp). Assume without
loss of generality that u; > 0. Then, by the symmetry of the normal
distribution

[2E (n? (whiz(u + dy)y1ye) |
= 2| E{n*(Wyry2(hiz(u + dy) — hia(u + By*) |yr > 0} . (A4)
Since

his(z) = ew(£1(2)) &0 (2) sgn z
N o T T

we have

() [hia(u 4 By) — hiz(n + dy*) |
ew (€1 (u + dy))
1 — &1(u + DY) on?(u + dy)
w(&1(u + by))

— £ (s + By*) + ek (u + dy¥) ((Tmb

__wte + dy*) ) () ( 7 (1)
1 — &1(u + Dy*)*/ n*(n + Dy) (s + by)

(&7 (u + dy)

L) - e W(E (e + By) AS
o ) e FEEERIS] - we
Observe that ) '

(0/021)£27% (2) = (1/b — 1)1 (2)£2' 70 (2) sgn 21/n(2)

and that £:(2) is an even function of z,. Hence, for uy > 0, y1 > 0,
and (u + y)2 = 0, we have

Isz“"(u + dy) — £ (u + dy®) |
< (1 = 1/b)Er(p 4 by*) 2270 (u 4 by) 2by1) /0 (/4 + dy*) .

Note also that on this same region #?(u) < 7*(s + wy), and recall that
w(E(e +3Y)/ (1 — £1(p + By)? < Kb (v + dy) < Kb (p + dy™).
on this region for some appropriate constant, K < «. Hence,

E( ew(£1(p + Dy))n? (u)
1 = &1(u + by))n?(u + dy)

— b+ D) | |y > o)

<5(

Y1ya (870 (u + y)

ly1>0)

1 .,
Y1yae (1 - E) K& (u + dy)2iy1/n (u + Dy*)

|G + oy
nG + Dy
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— 0 as |jul| = =, since E(|(u + dy*):|V» %) < K’ < «» for all
values of u, ® > 0, for some appropriate constant, K’ < .

Expectations appropriate to the remaining two terms on the right
of (A.5) can be similarly shown to tend to zero as ||u|| — «. Sub-
stituting in (A.4) thus yields that this part of the error term e;'(u)
is also insignificant. The remaining terms in (A.2) (forj =3, -+ -, p)
are exactly like the preceding term. Hence, n%(u)e)’(u) — 0 as
lluf — =

The remaining part of the error involves terms of the form E, (h:?(z)
— k(). Now,

1 1
k@) — heW | < B |5 = = ]
1 [ w(6@) wmm>)

W) \(1 — &@)® (1 — £a(w)®
From this expression it is easily verified as before that E,(h?(z)
— hi*(u)) = o(|lul|"®) as |[u]| = . This result combined with the

estimate for e;/(u) yield that e”(u) = c¢Wo(||ul[7?), as claimed in the
proof of Theorem 2.

[Received May 1973. Revised November 1974.]
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